Kempe's Universality Theorem for Rational Space Curves

نویسندگان

  • Zijia Li
  • Josef Schicho
  • Hans-Peter Schröcker
چکیده

We prove that every bounded rational space curve of degree d and circularity c can be drawn by a linkage with 2 d − 6c + 1 revolute joints. Our proof is based on two ingredients. The first one is the factorization theory of motion polynomials. The second one is the construction of a motion polynomial of minimum degree with given orbit. Our proof also gives the explicity construction of the linkage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 S ep 2 00 4 A Note About Universality Theorem as an Enumerative Riemann - Roch Theorem

This short note is a supplement of the longer paper [Liu6], in which the author gives an algebraic proof of the following universality theorem. Theorem 1 Let δ ∈ N denote the number of nodal singularities. Let L be a 5δ − 1 very-ample 1 line bundle on an algebraic surface M , then the number of δ−nodes nodal singular curves in a generic δ dimensional linear subsystem of |L| can be expressed as ...

متن کامل

Rational Choice Theory: A Cultural Reconsideration

Economists have heralded the formulation of the expected utility theorem as a universal method of choice under uncertainty. In their seminal paper, Stigler and Becker (Stigler & Becker, 1977) declared that “human behavior can be explained by a generalized calculus of utility-maximizing behavior” (p.76). The universality of the rational choice theory has been widely criticized by psychologists, ...

متن کامل

From the Fundamental Theorem of Algebra to Kempe's Universality Theorem

This article provides a gentle introduction for a general mathematical audience to the factorization theory of motion polynomials and its application in mechanism science. This theory connects in a rather unexpected way a seemingly abstract mathematical topic, the non-unique factorization of certain polynomials over the ring of dual quaternions, with engineering applications. Four years after i...

متن کامل

ar X iv : m at h / 04 05 11 3 v 1 [ m at h . A G ] 6 M ay 2 00 4 A Note About Universality Theorem as an Enumerative Riemann - Roch Theorem

This short note is a supplement of the longer paper [Liu6], in which the author gives an algebraic proof of the following universality theorem. Theorem 1 Let δ ∈ N denote the number of nodal singularities. Let L be a 5δ − 1 very-ample 1 line bundle on an algebraic surface M , then the number of δ−nodes nodal singular curves in a generic δ dimensional linear subsystem of |L| can be expressed as ...

متن کامل

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2018